

Minimum Coverage Breach and Maximum Network Lifetime in Wireless Sensor Networks

Chen Wang (Tsinghua University)

Joint work with: My Thai (University of Florida) Yingshu Li (Georgia State University) Feng Wang (Arizona State University) Weili Wu (University of Texas at Dallas)

Tsinghua University

Outline

 Coverage Model with Bandwidth Constraints
 Trade-off Scheme
 LP-relax Algorithm
 Greedy Heuristic
 Numerical Results

Wireless Sensor Network

Main characteristic:
 Limited energy
 Redundancy
 QoS measurement:
 Network Lifetime

Coverage

Tsinghua University

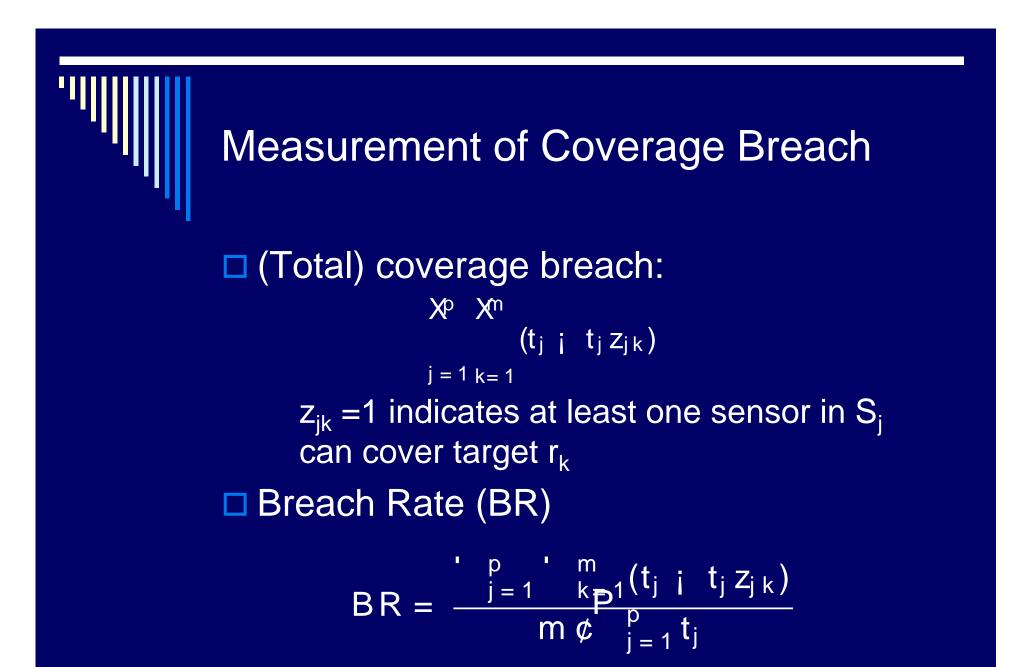
Single-hop Target Coverage Model

- Coverage Model
 - Target Model and Area Model
 - An area model can be converted into a target model
- Single-hop Target Coverage model
 - Setting:
 - a set of sensors/targets, and "covering" relations between them
 - Approach: scheduling sensor nodes into subsets, each of which can cover all targets, and is alternatively activated to work
 - Goal: total lifetime is maximized

Tsinghua University

Bandwidth Constraint

- □ A major potential problem:
 - Not sufficient bandwidth for a subset of sensors to simultaneously send data
- □ Bandwidth Constraint:
 - time division scheme of single channel: #time slots
 - multiple channels scheme: #channels
 - Essentially, size of simultaneously active sensors
- □ When bandwidth is not sufficient
 - Some targets are covered, but others may


not be. \$ BREACH

Tsinghua University

Related Work

Coverage breach issues due to bandwidth constraint is addressed by Cheng et al (05). Minimum Breach Problem Divide sensors into *p* disjoint subsets $S_1, S_2, ..., S_p$, where p = [n/W]Coverage breach is defined as Xp $(\# uncovered targets by S_i)$ i = 1The use of disjoint subsets simplify the issues but may weaken the solution.

Tsinghua University

Tsinghua University

Tradeoff

- In applications, totally coverage may not be necessary.
 - Minimize the coverage breach with a lower bound of NLT
 - Prolong NLT with an upper bound of coverage breach
- The longer network lifetime is gain, the more coverage breach may occur.
- A tradeoff between coverage breach and network lifetime
 - Two different models are proposed for the two scenarios above

Tsinghua University

Minimum Coverage Breach with Bandwidth Constraints (MCBB)

Given:

- Set of sensors C={s₁, s₂,...,s_n}
- Set of targets $R = \{r_1, r_2, \dots, r_m\}$
- Coverage relation between C and R
- Number of available channels W
- Minimum required lifetime T₀
- Output a optimal schedule of sensors,
 - $\{(S_1, t_1), (S_2, t_2), \dots, (S_p, t_p)\}, S_j \gg S$, subject to:
 - Total coverage breach is minimized
 - total active time for each sensor doesn't exceed 1
 - Network lifetime is at least T₀
 - Size of each S_j is at most W

Tsinghua University

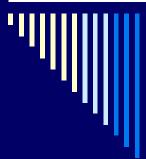
Minimum Coverage Breach with Bandwidth Constraints (MCBB)

Comparison between the Minimum Breach problem

- Non-disjoint subsets vs. Disjoint subsets
 Smaller Breach rate may be achieved
- Arbitrary total lifetime in (0,n]

vs. Fixed total lifetime [n/W]

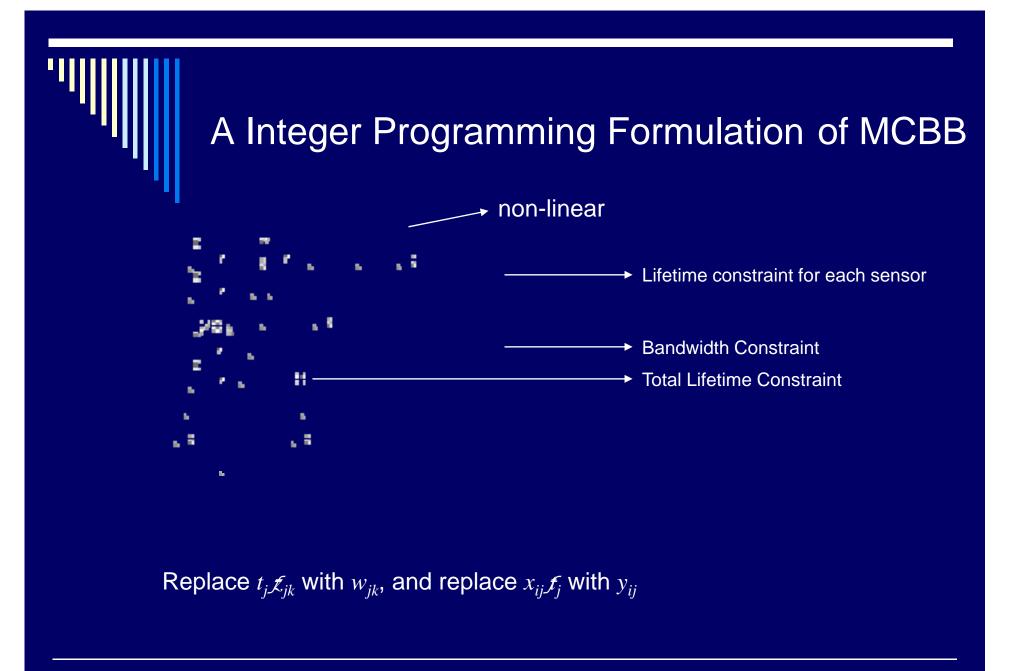
Maximum Network Lifetime with Bandwidth Constraints (MNLB)


Given:

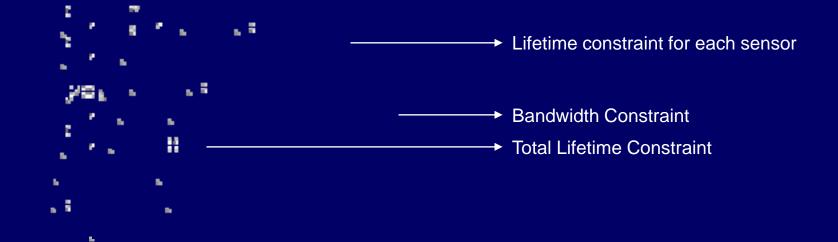
- Set of sensors C={s₁, s₂,...,s_n}
- Set of targets $R = \{r_1, r_2, \dots, r_m\}$
- Coverage relation between C and R
- Number of available channels W
- Max breach rate parameter α
- □ Output a schedule of sensors,
 - $\{(S_1, t_1), (S_2, t_2), \dots, (S_p, t_p)\}, S_i \gg S$, subject to:
 - Total network lifetime is maximized
 - total active time for each sensor doesn't exceed 1
 - Breach rate is at most α
 - Size of each S_j is at most W

Relation between MCBB and MNLB

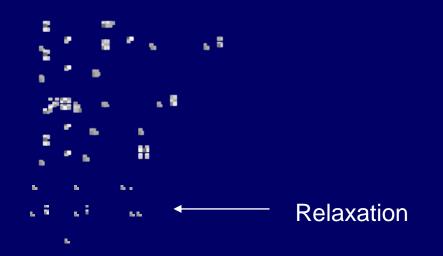
Strongly related with each other Any algorithm for MCBB can be converted into an algorithm for MNLB using a binary search strategy and vice versa


- How to solve?
 - Both are NP-hard
 - Heuristics are proposed to solve MCBB

Heuristics for MCBB — MSCMB: LP-relaxation algorithm


□ An LP-relaxation algorithm

Formulate MCBB into an Integer Linear Programming (IP)


Tsinghua University

Integer Linear Programming Formulation

Tsinghua University

Tsinghua University

Heuristics for MCBB — MSCMB: LP-relaxation algorithm

Step 0 : relax the integer constraints on y_{ij} and w_{jk}.
Step 1 : Solve LP to get the optimal solution i, i and i.
Step 2 : Round y_{ij} and w_{jk} according to the optimal value.

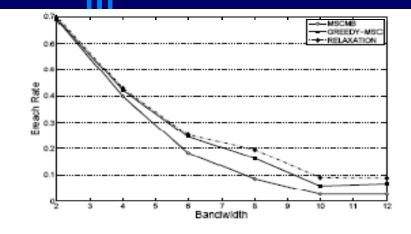
Heuristics for MCBB — Greedy-MSC algorithm

Another heuristic based on greedy strategy are also proposed.

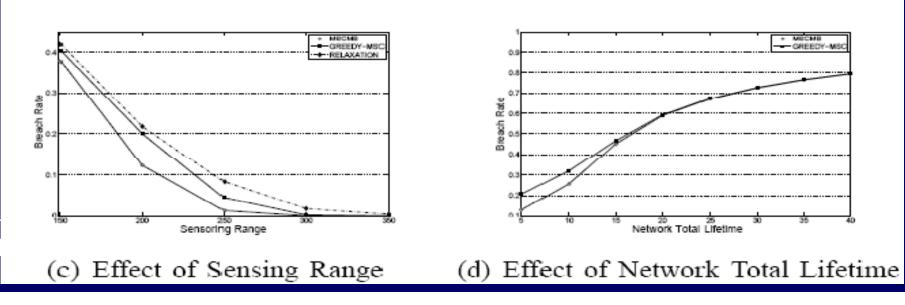
- Step 0 : Set the time granularity $l=T_0/p$
- Step 1 : Use greedy strategy to iteratively find subsets of sensors with the same time duration *l*.

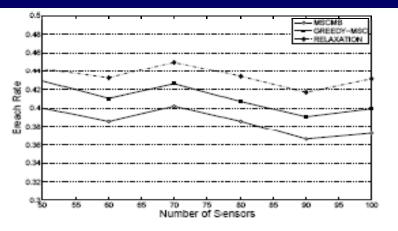
As we know, both MSCMB and Greedy-MSC algorithm can be used to solve MNLB.

MSCMB \$ MNLB-LP


Greedy-MSC \$ MNLB-Greedy

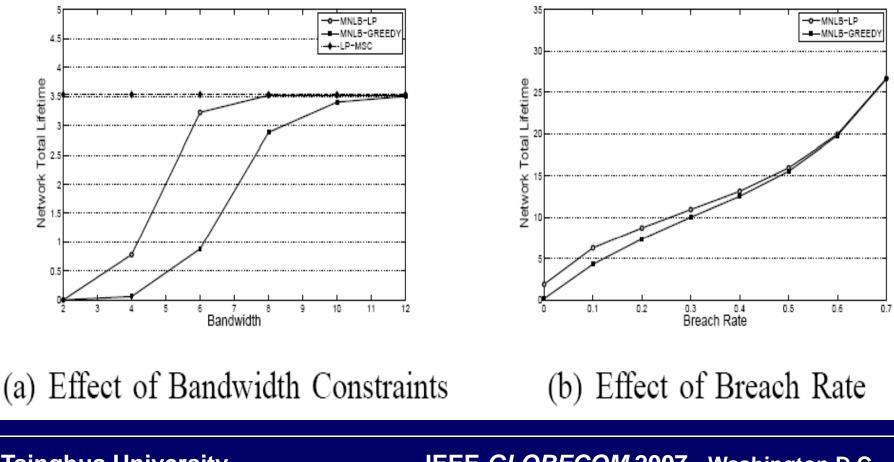
Experimental Performance


Simulations for MCBB


- Sensors and targets are uniformly deployed in a 500m by 500m area
- Default parameters:
 - □ n = 50
 - **m** = 30
 - □ W = 4
 - Sensor range = 150m
 - $\Box T_0 = [n/W]$ ——— for comparison

UNIT Experimental Performance

(a) Effect of Bandwidth Constraints


(b) Effect of Sensors Number

Experimental Performance

Simulation of MNLB

- Sensors and targets are uniformly deployed in a 500m by 500m area
- Default parameters:
 - n = 50
 m = 30
 W = 4
 Sensor range = 150m
 BR = 0

Tsinghua University

Conclusion

- Coverage model with bandwidth constraints are considered: network lifetime and coverage breach.
- A Tradeoff Scheme including MCBB and MNLB are proposed to address the issues.
- A LP-relax algorithm and a greedy heuristic are proposed to solve both problems.
- Simulation results show performances of both of our algorithms as expected.

□ Thanks!

Tsinghua University